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1  | INTRODUC TION

The advancement of basic and applied sciences, largely through aca-
demic pursuits, is central to our understanding of the world and the 
advancement of our societies. The cornerstone of scientific research 
is the research group, a principal investigator (PI) along with their 
students (graduate and undergraduate) and postdoctoral fellows 
(PDs). These research groups train new scientists who enter the sci-
entific workforce in a variety of capacities both inside and outside of 
academia, and research conducted in these groups provides valuable 
scientific contributions (Pezzoni, Mairesse, Stephan, & Lane, 2016). 

Despite the central role that academic laboratories play in scientific 
training for STEM fields, the patterns of gender composition in re-
search (laboratory) groups have rarely been investigated (but see: 
Sheltzer & Smith, 2014).

Differences in gender composition in a given STEM field or re-
search group can come about through two distinct, though not mu-
tually exclusive, mechanisms. A gender may be underrepresented 
because they apply in fewer numbers (1; application differences) or 
because fewer applicants of that gender are chosen to join the re-
search group (2; acceptance differences). These two mechanisms are 
not necessarily independent (e.g., women apply less and are chosen 
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less as PDs in math-intensive fields) and can have complex under-
lying causes (Ceci & Williams, 2010, 2011). We suggest that under-
standing the relative importance of these two mechanisms and their 
underlying cause(s) can help fields and research groups understand 
and reflect on differences in gender composition in STEM fields.

Patterns of application and acceptance differences between 
genders have been attributed to several underlying causes. Early 
career aspirations, perceptions of the need for innate ability and 
stereotype threat (Leslie, Cimpian, Meyer, & Freeland, 2015), choice 
of undergraduate major, and personal aspirations (e.g., work-life 
balance) have all been proposed as explanations for the lack of fe-
male applicants in particular fields (e.g., math and physics; Ceci 
& Williams, 2011; Morgan, Gelbgiser, & Weeden, 2013; Sadler, 
Sonnert, Hazari, & Tai, 2012). Implicit and explicit bias of professors 
has similarly been suggested to affect gender differences in accep-
tance rates from the applicant pool (Ceci & Williams, 2011; Moss-
Racusin, Dovidio, Brescoll, Graham, & Handelsman, 2012), with the 
former likely being more prevalent (Ceci & Williams, 2010). Each of 
these causes can independently or jointly underlie the ultimate pat-
terns of gender differences among fields, but do not provide clear 
insights into the finer scale structure of research groups. This is vital 
to understand because gender ratios at the research group level can 
have a strong effect on the gender composition of the researchers in 
the field whenever male and female PIs are not equally represented. 
The structure of these units influences the gender composition at 
each step of the training process up to the point at which individuals 
seek independent positions as faculty or in other research capac-
ities. Therefore, the pipeline that ultimately leads to independent 
scientists necessarily passes through these research groups. Past 
work has shown that while PI gender and status are related to re-
search group gender composition, whether these factors manifest 
themselves by influencing decisions to apply or the acceptance rates 
of applicants is unknown (Sheltzer & Smith, 2014). While our study 
cannot distinguish the underlying reasons for application or accep-
tance differences, it can shed light on which of these processes acts 
most strongly to structure laboratory groups.

Outside of the highest-profile research groups (Sheltzer & Smith, 
2014), whether group leader gender is associated with gender ra-
tios within their groups is poorly known. Previous research suggests 
that the gender of the PI and their level of achievement or experi-
ence may explain some of the variation in gender among research 
groups (Sheltzer & Smith, 2014). Importantly, the vast majority of 
students are trained in laboratories that are run, not by these high-
est status PIs (as defined by Sheltzer & Smith, 2014), but by PIs who 
have not achieved the same status. Therefore, to explain gender dy-
namics within fields more broadly, we require an understanding of 
laboratory formation in typical rather than high-status laboratories. 
Our lack of understanding on the underlying cause of this pattern 
precludes the ability to thoroughly understand patterns underlying 
gender differences among the majority of research groups training 
future scientists.

We aimed to investigate patterns of gender structure in scientific 
research groups by simultaneously considering applicants to these 

research groups and current trainees across academic stages (we 
consider undergraduate students, graduate students, and postdocs 
(hereafter: PDs) to be trainees but at different academic stages). We 
used survey techniques to consider patterns at two scales of organiza-
tion: across scientific fields and within biology (the field for which we 
had the greatest representation). Specifically, we sent online surveys 
(Appendix S1, Table S1) to department chairs (science-based depart-
ments in Canada) and asked them to forward the link to all professors 
in their department, then also disseminated the same survey through 
various subject-specific email lists (largely biology related) which reach 
an international pool of scientists. We discuss potential limitations and 
biases inherent to this approach below. Self-reported patterns sug-
gest that there were fewer women in research groups in the physical 
sciences (math, physics, chemistry), and that these differences were 
largely driven by differences in the gender composition of the appli-
cant pool. Conversely, within biology, variation in the self-reported 
gender composition of research groups was jointly determined by 
application and acceptance differences. Reported patterns of appli-
cant gender were largely determined by PI gender and experience. In 
sum, application and acceptance differences both contribute to the 
over-/underrepresentation of women in particular fields and research 
groups, although application differences seem to dominate.

2  | METHODS

2.1 | Data collection

We collected data on the gender composition of academic laboratory 
groups (PI, PDs, graduate and undergraduate students), and poten-
tial predictors we hypothesized might affect the gender composition 
of laboratory groups using a short online survey. Note that while 
laboratory technicians and staff scientists can be invaluable in many 
research groups, we did not include these personnel in our survey 
as we were focused on researchers in the classic academic progres-
sion from undergraduate to graduate student to PD to PI. We asked 
twenty-one questions with either short (e.g., institutional/depart-
mental affiliation) or numerical (e.g., gender ratio of male and female 
graduate students within a laboratory group) answers then allowed 
participants to provide any other comments that they thought we 
may find useful (Appendix S1, Table S1). Note that when inquiring 
about gender ratios of applicants, we asked that respondents only 
include legitimate applications, rather than generic form-style email 
applications that are frequently mass distributed. By comparing the 
rates at which men and women apply to a given research group with 
current gender representation in that group, we can better under-
stand whether patterns of laboratory gender composition are driven 
by gender-biased applications or acceptance rates. To maximize re-
sponses and promote honest answers, we chose to make our survey 
anonymous, precluding an analysis of the achievements of the PI as 
a factor in determining gender differences (e.g., Pezzoni et al., 2016). 
Survey methods are likely to result in a biased subset of answers, 
for example those people choosing not to respond may include the 
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professors with the greatest (implicit or explicit) gender bias. We dis-
cuss the issue of selection bias in our survey in greater detail below.

Our goal was the widest possible dissemination of our survey 
with a focus on biology in Canada, our field and region of study. We 
circulated the survey in two ways: (a) by emailing Canadian depart-
ment heads (chairs) of major departmental divisions (mathematics, 
physics, chemistry, biology, psychology) and asking them to forward 
our survey to other faculty in their department and (b) by sending 
mass emails through subject listservs and email lists. Note that we 
received >70% of all responses from the United States and >95% of 
responses from North America, but from a wide variety of universi-
ties. One potential reason is that the survey was only sent in English, 
making it potentially less accessible to faculty at francophone uni-
versities in Canada. These universities and even departments within 
universities are likely to differ in many ways, including in size, re-
search focus, and recruiting policies.

Participants received a link to our SurveyMonkey (Survey
Monkey© 2017) questionnaire (Appendix S1, Table S1), a statement 
that we were generally investigating patterns of gender in academia 
(Appendix S1), and the required human ethics documentation. 
Following the dissemination of our survey, we allowed participants 
more than 4 weeks to respond, ending data collection when we re-
ceived no responses for three consecutive days.

Note that while surveys can produce biased subsets of respon-
dents, they are used in similar studies (e.g., Riffle et al., 2013). Biases 
are likely to weaken or strengthen any observed patterns (e.g., men 
have some particular percentage of graduate students), but not affect 
qualitative differences (e.g., men have more male graduate students; 
Ceci & Williams, 2010; Ceci & Williams, 2011; Sheltzer & Smith, 2014). 
Additionally, given the diversity of ways in which applications are han-
dled across institutions and even across departments within institu-
tions, surveying individuals PIs is the most feasible way to generate 
adequate and comparable data across a large number of STEM fields 
and institutions. On the other hand, clear opportunities for bias arise 
in our survey methods. While we recognize that this survey relies on 
faculty memories, which may be imperfect, by restricting these recol-
lections to candidates who would be seriously considered we assume 
that faculty estimates of applicant numbers are close to accurate and 
unbiased with respect to the questions we address here (there is a fur-
ther discussion of recall bias below). We are also assuming that faculty 
are correctly assessing the gender of applicants, which may not be the 
case, particularly when the applicant is from another culture or has a 
name from a language unfamiliar to the PI. Nonetheless, we discuss 
the potential for biased subsets of respondents (e.g., fewer responses 
from more biased faculty), recall bias (e.g., more recollection of male 
or female applicants), and social desirability bias (e.g., under- or over-
reporting the male application rates) in the discussion.

2.2 | Data proofing

Before beginning our analyses, we extensively proofed the data. 
First, we only retained data for individuals that completed the 

survey (>90% of all individuals). Note that we do not know the pro-
portion of respondents from listservs versus emails to department 
chairs, but only Canadian department chairs were emailed while 
only ~25% of respondents were at Canadian institutions. This then 
suggests that the vast majority of responses were from individuals 
contacted through listservs, and the survey is likely more represent-
ative of American than Canadian institutions. Next, we removed all 
answers that were clearly fraudulent (e.g., Trump University, n = 2). 
We then removed all instances of non-numerical responses to quan-
titative questions (e.g., how many male graduate students), replacing 
these values with NAs. Finally, we removed PIs who self-identified 
as gender nonbinary (n  =  1). While we recognize the potentially 
unique position of nonbinary PIs, the low number of nonbinary par-
ticipants precluded a thorough statistical analysis. However, we will 
note here that the research group of the nonbinary PI contained an 
equal number of male and female graduate students. We also note 
that we inquired as to the gender, rather than the biological sex, of 
respondents and trainees. While not a goal of our study, we certainly 
acknowledge the potential important of sex versus gender differ-
ences in academia.

We have included summary statistics of survey results in 
Appendix S2. We next assigned each PI to one of five fields based 
on their departmental affiliation (psychology, biology, chemistry, 
physics, mathematics; Appendix S2, Table S3). In subsequent anal-
yses, we removed respondents from fields that were not biology, 
psychology, mathematics, physics, or chemistry, because other fields 
were very sparsely represented (Table S3; total n = 17 yielding a true 
sample size of n = 433).

We calculated percentage of males for each academic category 
(e.g., percentage of male applicants to a research group). In all cases, 
gender ratios are represented as the proportion of males (males/
total group) within a laboratory group. Because proportions do not 
account for sample size (e.g., from the perspective of statistical error 
1:1 is not the same as 10:10), we repeated all below regression analy-
ses while weighting each point (proportion) by its sample size, hence 
accounting for differences in the amount of data composing each 
proportion. We analyzed this data set in two ways, investigating pat-
terns of gender both among fields and then within biology groups.

2.3 | Among-field analyses

We began by testing for patterns of gender composition of trainees 
within laboratory groups and applicants across academic fields. We 
first used academic field to estimate the proportion of male graduate 
applicants in a general linear regression (GLM) with a logit link func-
tion, including academic experience of PIs and PI gender as random 
effects. We repeated this analysis for undergraduate trainees (re-
search students), graduate trainees, PD applicants, and PD trainees. 
Note that we did not include institution or department as a random 
effect because most of our responses were from different institu-
tions, and because institution did not predict any measure of gender 
representation at any stage (using GLM all p > .25).
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We next aimed to link the gender of applicants and trainees 
across academic stages and fields. We used rank-order correlations 
to predict the percentage of male trainees using the percentage 
of male applicants separately for graduate students and PDs. We 
then tested for the scaling of gender representation (percentage) 
across academic stages, using the above model to estimate the 
percentage of male graduate trainees from the percentage of male 
undergraduate research trainees and to estimate the percentage of 
male PDs from the percentage of male graduate trainees. In order 
to test for consistent gender patterns across academic stages, we 
regressed academic stage against the percentage of males using 
a logistic regression, while including field of study as a random 
effect.

2.4 | Within-field analyses for biology

We tested for gender patterns within fields by analyzing data 
from biology laboratory groups, the field for which we had the 
most data. We first tested for differences in the percentage of 
male trainees and applicants between male and female PIs using 
generalized linear regressions with logit link functions, repeating 
this analysis separately for each academic stage. We next aimed to 
determine whether any differences in the gender ratios of trainees 
and applicants were a direct result of PI gender or rather owing to 
differences in the gender composition of applicants. We accom-
plished this by using a linear regression with the percentage of 
male graduate students as the response variable and the percent-
age of male applicants and PI gender as predictors. We then used 
another linear regression to test for factors potentially control-
ling the gender composition of applicants, regressing academic 
experience of applicants and PI gender against the percentage of 
male applicants in a fully interactive model. In all above analyses, 
significance was calculated using log-likelihood ratios, with likeli-
hoods determined from the maximum likelihood solution. All anal-
yses were conducted in R (R core team), using the “lme4” (Bates, 
Mächler, Bolker, & Walker, 2014), and “car” (Fox & Weisberg, 2011) 
packages.

We then attempted to infer causal links and join our analyses 
together using structural equation modeling (SEM). We began by as-
suming that PI gender, academic experience of PIs, and the gender 
makeup of applicants affected the gender composition of trainees 
but not vice versa (but see discussion for arguments against this as-
sumption). We therefore fit all SEMs using regression rather than 
covariance, although relaxing these assumptions yielded qualita-
tively identical results. Before constructing SEMs, we standardized 
all independent and dependent variables by subtracting the mean 
and dividing by the standard deviation. We began our analyses with 
the simplest possible model by linking PI gender, the percentage of 
male applicants, and academic experience to the percentage of male 
trainees. We then sequentially added links, selecting the best-fit 
model using AIC and calculating the significance for each link using 
log-likelihood ratio estimates of standard error. All SEM analyses 

were performed in R (R core team) using the “lavaan” (Rosseel, 2012) 
package.

3  | RESULTS

3.1 | Gender patterns among fields

Our survey received 463 total responses most of which were 
from female (60% of all PI respondents) biologists (75% of all PIs; 
Appendix S2, Table S2). The gender-biased response rate means 
that results should be interpreted with caution as most fields we 
surveyed have a majority male researchers (with the exception of 
psychology) (data from NSERC, 2017). Additionally, response rates 
were low, <1% of the number of individuals reached based on list-
serv subscription numbers and the size of departments that were 
contacted by emails to department chairs. Nonetheless, these re-
sponses gave us a reasonably large cross-sectional data set of male 
and female PIs with research groups that vary considerably in their 
reported gender ratios. Fields varied in the number of self-reported 
women at each academic stage (all p < .001), with the representation 
of women being generally lowest in physical sciences (Figure  1a, 
mathematics < physics < chemistry < biology < psychology). The su-
pervisor reported gender of trainees was predicted by the gender 
of applicants across fields (Figure  1b) for both graduate students 
(p = .001) and PDs (p = .01). Analogously, the reported gender com-
position of undergraduate research students predicted the same 
metric among graduate students (Figure  1c, p  =  .016) and the re-
ported gender composition of graduate students in turn predicted 
the gender ratio of PDs (Figure 1d, p =  .047). Across all fields, the 
reported representation of men increased at later academic stages 
(e.g., PD, Figure 1a, p = .02), with this effect being particularly pro-
nounced in some fields (math and chemistry, Figure 1a, field * stage 
interaction: p = .003).

3.2 | Gender patterns within biology

Within biology, an average research group reported having 43% 
male graduate students. However, male and female PIs reported 
supervising 60% and 30% male graduate students, respectively 
(Figure 2a, R2 = .31, p <  .001). The difference in graduate student 
gender composition was largely driven by differences in reported 
applicant gender (Figure  2b, main effect of applicant gender: 
p <  .001). However, the relationship between reported gender of 
applicants and trainees was modified by PI gender, with female 
PIs more closely tracking applicant gender (slope closer to one in 
Figure 2b, applicant * PI gender: p = .012; R2 of complete model is 
.23). However, our data suggest that female PIs are more likely to 
select women even when their research groups are not at an equal 
in gender ratio (when their research group comprised ~35% women 
versus ~50% for male PIs; dashed lines in Figure 2b which indicate 
a lower slope in male acceptance to application rates above those 
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values for female and male PIs). The reported gender composi-
tion of applicants was in turn driven by PI gender, and an interac-
tion between PI gender and academic experience (Figure 2c; R2 of 
complete model is .32): male PIs reported receiving more graduate 
school applications from men (main effect of PI gender: p < .001), 
but only when they were hired recently (PI gender * academic ex-
perience: p = .002).

Gender differences at academic stages other than the graduate 
stage were less pronounced. The reported gender composition of 
undergraduate trainees was unaffected by PI gender or experience 
(all p  >  .25). A given research group had more reported male PDs 
when more male PDs applied (p  =  .003), but this relationship was 
unaffected by PI gender (p > .3) and neither PI gender nor academic 
experience predicted the reported gender ratio of PD applicants 
(both p > .4). All results were qualitatively identical after controlling 
for sample size associated with a given proportion.

3.3 | Structural equation model within biology

Our SEM explained the gender composition of students better than 
models including more/fewer links (ΔAIC = 4.6; R2 of final model is 
.41). PI gender affected the proportion of graduate students who 
were reportedly male directly (p = .03) and indirectly by increasing 
the number of reported male applicants (both paths p  <  .001), al-
though the latter mechanism was dominant (Figure 3). PI experience 
reduced the proportion of applicants reported as male; however, 
this effect was nonsignificant in the absence of interactive terms 
(both p > .4). Overall, our SEM describing the gender composition of 
graduate students within biology was in agreement with our other 
analyses.

F I G U R E  1   Patterns of gender of survey respondents among academic fields. (a) The proportion of male trainees across academic fields 
and stages. Yellow bars represent undergraduate trainees. Blue and red bars represent graduate students and PDs, with light and dark bars 
showing applicants and trainees, respectively. We have arranged the fields from those perceived to be most to least math intensive (or from 
“hard” to “soft” sciences). The black dashed line represents equal number of male and female trainees/applicants. Error bars represent one 
SE from a logistic regression. (b) The proportion of male applicants is related to the proportion of male trainees for both graduate students 
(blue) and PDs (red). (c) The proportion of male undergraduate students predicts the proportion of male graduate students (d) which in turn 
predicts the proportion of male PDs. Each point represents one field. All best-fit lines represent predicted values from separate LMs. Sample 
sizes are as follows: mathematics (n = 30), physics (n = 32), chemistry (n = 16), biology (n = 328), and psychology (n = 27). Because sample 
sizes differed markedly, error bars represent standard deviations
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4  | DISCUSSION

Our results show that gender differences among research groups 
exist across and within fields at all stages of academic training. In re-
search groups, women tended to be underrepresented in math, phys-
ics, and chemistry, but were equally or overrepresented in biology 
and psychology (Figure 1a; although absolute gender representation 
is difficult to interpret from survey data). We attributed measured 
differences in the representation of women among fields to equiva-
lent differences in the gender composition of applicants (Figure 1). 
Within biology, male PIs reported having more male-biased research 

groups, while the reverse was true for female PIs (Figure 2a); pat-
terns we attributed to both application and acceptance differences 
(Figure 3). The gender of the reported applicant pool for a given lab-
oratory was in turn predicted by PI gender and years of experience 
(Figures 2 and 3). We suggest that complex differences in applicant 
pools and acceptance rates ultimately underlie observed patterns of 
gender differences among and within fields.

Patterns of gender across fields are consistent with past work 
showing a lack of women in mathematics and the physical sci-
ences, and suggest that equal gender representation among the 
professoriate will be unattainable without intervention below the 

F I G U R E  2   Patterns of trainee and applicant gender in biology. (a) Male PIs (blue) support a greater proportion of male graduate 
students relative to female PIs (green). Grey and black dashed lines represent the mean proportion of male graduate students and the 
mean proportion of male graduate students if an equal number of male and female PIs had participated in the survey respectively. Error 
bars are estimated from a logistic GLM. (b) The proportion of male graduate students in a research group was largely determined by the 
proportion of male applicants, although this relationship differed for male (blue) and female (green) PIs. The black dashed line shows the 1:1 
relationship, indicative of PIs choosing students independent of applicant gender. Point above and below the 1:1 line represent cases where 
male and female applicants are preferentially selected. Best-fit lines represent predicted values from a GLM. (c) Male PIs (blue) received 
more applications from men than female PIs (green). However, this relationship changed depending on the academic experience of the PI, 
with PI gender having a large effect at an early career stage but being negligible later in their career. In (b) and (c) points were made partly 
transparent such that more opaque points represent more PIs. Error bars show standard deviations
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undergraduate level. We found a consistent decline in the number 
of reported female applicants in math and physical sciences across 
academic stages (Figure  1a; math  <  physics  <  chemistry  <  biol-
ogy < psychology), and that this decline was driven by changes in 
the gender composition of the applicant pool (Figure 1b). Our results 
corroborate other data showing that physics and biology under-
graduates are 19% and >50% female, respectively (Gino, Wilmuth, 
& Brooks, 2015). However, while the relative representation of 
women among fields is consistent with past work, we caution against 
interpreting absolute levels of gender representation (e.g., 50% fe-
male) from survey data because the pool of respondents is likely to 
be biased. Regardless, because so few women are starting under-
graduate degrees in the physical sciences, necessarily few women 
will go on to become professors in those fields (Figure 1c,d; Shaw 
& Stanton, 2012). This pattern appears to be exacerbated but not 
driven by declines in the number of women choosing to continue 
in academia to the level of PD and ultimately professor (Figure 1). 
Our results then suggest that the gender composition of the appli-
cant pool is a strong factor driving the low representation of women 
as PIs in the physical sciences (math, physics, and chemistry; Shaw 
& Stanton, 2012). Conversely, the high representation of women 
in biology and psychology, and their decline among graduate stu-
dents and PDs suggests that later career (postgraduate) obstacles 
are preventing an equal gender representation among professors in 
these fields (Figure 1a; Miller & Wai, 2015; Sheltzer & Smith, 2014). 
In sum, among-field patterns of gender representation in research 
groups in this study are consistent with past work (e.g., Gino et al., 
2015) and appear to be largely driven by differences in the applicant 
pool, although gender differences in the applicant pool may manifest 
at different academic stages (e.g., undergraduate to graduate, and 
graduate to PD; Shaw & Stanton, 2012).

Applicant pools may be male- or female-dominated for several 
reasons. As discussed earlier, personal and professional consid-
erations can affect men and women differently (Ceci & Williams, 
2011; Sheltzer & Smith, 2014). These decisions can be free or 
constrained, for example by women being more likely to be the 

dominant caregiver in families with children and more likely to sacri-
fice their career prospects for those of their partner (relative to men; 
Ferriman, Lubinski, & Benbow, 2009; Goulden, Mason, & Frasch, 
2011Martinez et al., 2007). While these factors undoubtedly play 
a role, they fail to satisfyingly explain among-field differences, par-
ticularly at the undergraduate level. An intriguing possibility is that 
women entering undergraduate degrees are less likely to be inter-
ested in fields where women hold fewer prominent positions (Drury, 
Siy, & Cheryan, 2011) and which are perceived as requiring greater 
natural brilliance (Leslie et al., 2015). The corollary to this idea is that, 
should enough women become prominent professors in those fields 
(e.g., math and physics), women entering undergraduate degree may 
be more likely to apply to those fields, creating the potential for a 
positive gender feedback-loop (Leslie et al., 2015). In effect, it is pos-
sible that the more women are successful in a field, the more women 
will want to enter that field.

Within biology, we found that reported application and accep-
tance rates differed between genders, with PI gender underlying 
both patterns. Male and female PIs reported having more male and 
female graduate students, respectively, even after controlling for 
the skew in the gender of survey participants (Figure 2a). However, 
the relationship between the reported gender of applicants and 
the gender of accepted students differed for male and female PIs 
(Figure 2b). Male PIs had a relatively constant representation of men 
and women in their laboratories, regardless of the reported propor-
tion of men and women applying. In research groups led by females 
PIs, the gender ratio within the laboratory tended to closely mirror 
the gender composition of the reported applicant pool (slope closer 
to one in Figure  2b). Despite this difference, laboratories headed 
by male and female PIs appeared to have different gender ratios 
at which female applicants were disproportionately likely to be ac-
cepted (relative to applicant numbers). Female PIs with laboratories 
with 35% male trainees or more accepted more females than pre-
dicted by the applicant pool, while for male PIs this pattern occurred 
in laboratories that were 50% of trainees were male (dashed lines in 
Figure 2b). PIs may generate this pattern if they are responding to 
laboratory gender ratios and adjusting their patterns of acceptance 
over certain thresholds that differ based on PI gender, or this pattern 
could be driven by applicants if applicants are more likely to accept 
offers in laboratories dominated by trainees of the opposite gender. 
Regardless of the mechanism, both slopes were less than one sug-
gesting that (to differing degrees) research groups led by male and 
female PIs change which gender disproportionately joins the labora-
tory, leading to co-ed research groups within biology.

An important caveat is that we are treating all applicants as equal. 
It is possible that while male and female PIs treat male and female 
applicants differently (Figure 2b), that is, this effect is driven not by 
a simple gender dichotomy, but rather by the interaction of applicant 
quality and gender (Moss-Racusin et al., 2012). Whether that deci-
sion is conscious or unconscious, whether this change is mediated by 
differences in the likelihood of applicants accepting positions or PIs 
changing their selection criteria, and why male and female PIs might 
approach applicants differently remain open questions.

F I G U R E  3   A SEM diagram describing the gender composition 
of biology graduate students. PI gender predicted the proportion 
of male graduate students, but largely through its effect on the 
proportion of male applicants. Numbers represent standardized 
regression coefficients, and arrows are scaled to the magnitude of 
the coefficient. Black and red lines represent positive and negative 
effects, respectively. Significance values: *<.05, **<.01, ***<.001
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Research groups led by male and female PIs differed in the 
gender composition of their students, and at least for early career 
researchers they also drew from applicant pools that differed in gen-
der composition. Among inexperienced PIs (<10–15 years), men and 
women reported receiving more applicants from people of the same 
gender (Figure 2c). Our results contrast those of Sheltzer and Smith 
(2014) who found that women are underrepresented in the research 
groups of elite male faculty; however, this may be because they ex-
plicitly considered the prestige of the PI rather than their experi-
ence. In our study, one possibility is that a lack of information about 
young PIs may drive a divergence in the gender composition of appli-
cants. Applicants may be more likely to implicitly favor members of 
their own gender (or generally have implicit bias) if the PI is relatively 
unknown (e.g., young; Ginther et al., 2011). This hypothesis is sup-
ported by the lack of an equivalent pattern among undergraduates 
or PDs who likely have more information about PIs, either through 

direct interactions during undergraduate courses or because they 
are at a more advanced career stage and have a more thorough un-
derstanding of their field and interests (Box 1). Explicitly favoring a 
PI of the same gender may also partly explain applicant gender dif-
ferences, as several survey participants suggested that women may 
choose to apply to female PIs under the presumption that female PIs 
are more likely to be understanding of lifestyle issues. In sum, male 
and female PIs draw their students from applicant pools that differ in 
reported gender composition, although this effect disappears later 
in their careers.

Our SEM analysis corroborates our earlier results, showing 
that within biology both reported application and acceptance 
differences drive the ultimate gender composition of a research 
group, and that both mechanisms are altered by PI gender 
(Figure  3). While both mechanisms affected gender in research 
groups, the effect of reported applicant differences was four 

Box 1. Practical steps to foster gender diversity in research groups

Unfortunately, there is relatively little research investigating gender dynamics in research groups, making it difficult to provide 
evidence-based suggestions. Instead, below we list some ideas that may address the systemic gender differences found by our study 
and others. These ideas stem from the comments of reviewers and colleagues. We encourage further study to improve our under-
standing of academic gender dynamics, with the goal of creating an evidenced-based framework for addressing such issues.

Recruitment practices

Increasing interactions between prospective research students and faculty may be key in increasing the diversity of the applicant 
pool to particular laboratories, particularly the laboratories of junior faculty.
1.	Institutions (universities and departments) can support open houses or recruitment trips for prospective graduate students early 

in the application process. Early interactions may be most successful as these can occur while prospective students are still iden-
tifying potential mentors.

2.	Research conferences can facilitate networking opportunities that bring together faculty and prospective graduate students with 
a particular emphasis on highlighting the research programs of junior faculty where student familiarity may be lowest.

3.	Faculty advising undergraduates and/or graduate students can reflect on the diversity of potential supervisors they recommend 
students investigate for their next position. Encouragement to consider a faculty member of the opposite gender may broaden the 
pool of mentors students consider.

Making it work post-recruitment

Increasing gender diversity in research laboratories depends not only on diversifying the applicant pool but also on making sure 
diverse groups work and students are retained. Creating research group culture that supports this diversity is vital to this part of the 
process and institutions can play a role by providing resources that support this process.
1.	Provide funding for conference or research trip travel that supports research group diversity. Having everyone in a research group 

bunk in a single hotel room during a research trip can work for some groups, but not all. Increasing gender diversity within research 
groups can result in increased costs for accommodations at conferences or other research trips but university support can ame-
liorate this.

2.	Support communal activities that are welcoming to all. The opportunity to engage in discussions and interactions outside of the 
more formal work context is one of the great joys of academic training and helps create a social support system for trainees. 
Opportunities for social interactions can, however, become exclusionary if the context isn't fully considered (e.g., if all social activi-
ties occur after 6 p.m. the parents of young children may be systematically excluded). Universities and departments can provide 
space and resources for inclusive social events. This can be as simple as a regular coffee hour or making sure not all social events 
happen in the evening.
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times greater than acceptance differences (standardized coeffi-
cients in Figure 3). Ultimately, while male and female PIs did tend 
to select relatively more same-gender applicants to join their re-
search group, the larger effect can be attributed to differences 
in reported applicant gender composition. An important caveat 
is that students declining postacceptance or leaving the labora-
tory group could equally cause gender-biased laboratory groups, 
but this would fail to explain the congruence between application 
and acceptance rates. Nonetheless, the gender-based decisions 
of applicants seem to shape the gender composition of research 
groups. On a practical level, a conscious consideration of gender 
biases in networking and when informally recommending supervi-
sors may further reduce gender-biased application rates.

However, these patterns may have been driven by biased survey 
responses, since PIs concerned with gender representation may be 
more likely to respond to surveys that ask questions about labora-
tory gender composition (relative to PIs who seldom consider gen-
der as an important factor when assembling their research group). 
Indeed, we observed a female bias in respondents (60% were fe-
male), although researchers in all fields we examined except psychol-
ogy are predominately male (NSERC, 2017). These potential biases 
would be expected, however, to decrease the effects of PI gender on 
laboratory composition, suggesting that our results are conservative 
estimates of these effects. Despite this potential bias, there were 
still marked differences in gender composition between laboratory 
groups led by men and women, suggesting that either this pattern is 
exceedingly strong, or that respondent bias was a relatively minor 
factor.

An important and nontrivial question is why do gender differ-
ences among or within fields matter? Certainly many will agree 
that equal gender representation is an intrinsic and moral goal. 
However, are there concrete consequences of differences in gen-
der composition? We expect that there are many, but we highlight 
those with greatest implications for academia and society. Given 
that men and women are equally competent, the best possible pool 
of young scientists would be drawn from fields and research groups 
that do not discriminate based on gender. This may be particularly 
important given the projected shortfall in the number of young sci-
entists in the coming decades (Moss-Racusin et al., 2012). Given 
the importance of science for the advancement of society, it is im-
portant to train enough scientists while drawing from the best pos-
sible pool of students. Gender differences in training of qualified 
students may be detrimental for both academia and society, and we 
suggest that future work investigates the consequences of these 
gender differences. In addition to the role of academic laboratories 
in training future scientists, there is evidence that mixed-gendered 
groups produce higher quality science (Campbell, Mehtani, Dozier, 
& Rinehart, 2013). We may therefore conclude that gender equity 
in laboratory groups could serve not simply to increase the role of 
women in science, but would likely be a benefit for all involved, 
facilitating the production of higher quality work. While there is 
no prescription that laboratory groups need to have even gender 
ratios in order to be successful, and given the limited numbers of 

trainees in most laboratories variation from this at any one time 
is likely to be the norm, gender diversity appears to yield distinct 
rewards.

The continued advancement of science, societies, and our 
knowledge of the world depend on recruiting the best scien-
tists, from a diverse pool of potential scientists without barriers 
based on gender (or other factors we did not explore here). We 
have shown that while hiring biases undoubtedly exist, the gender 
composition of reported applicant pools is the dominant driver of 
gender differences among trainees (Figures  1-3) and potentially 
professors. These patterns are consistent both across the sciences 
(Figure 1), as well as within a single field (biology; Figures 2 and 
3). Crucially, PI gender can itself affect the gender composition 
of the reported applicant pool (Figure 2c), suggesting that feed-
backs between the prominence of women and the gender of ap-
plicants may underlie differences in the gender composition of 
research groups (Leslie et al., 2015). For institutions such as uni-
versities, this suggests that programs aimed at fostering gender 
diversity in their trainees may be most successful at the recruit-
ment stage. One approach might be to encourage interactions be-
tween prospective trainees and early career faculty to enhance 
their familiarity with the research programs of PIs they may not 
have considered as mentors. This could act to equalize the gen-
der ratio of applicants, particularly for early career PIs (Figure 2c). 
Simple and pragmatic solutions, such as increased networking and 
a knowledge of unconscious bias at the personal and institutional 
level, would likely reduce patterns of gender bias (See Box 1 for 
specific recommendations). Ultimately, only by addressing issues 
of gender representation at the applicant level can we hope to 
eliminate gender differences in the sciences, fostering diverse and 
productive research groups and allowing for the strongest possi-
ble expansion of the scientific workforce.
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